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SUMMARY 

Hybrid analysis techniques based on the combined use of finite elements and the 
classical Bubnov-Galerkin approximation are presented for predicting nonlinear 
steady-state temperature distributions in structures and solids. In these hybrid 
techniques the modeling versatility of the finite-element method is preserved and a 
substantial reduction in the number of degrees of freedom is achieved by expressing 
the vector of nodal temperatures as a linear combination of a small number of global- 
temperature modes, or basis vectors. The Bubnov-Galerkin technique is then used to 
compute the coefficients of the linear combination (i.e., the amplitudes of the 
global-temperature modes). 

The basis vectors chosen are the path derivatives commonly used in perturbation 
techniques, namely, the derivatives of the nodal-temperature vector with respect to a 
preselected control (or path) parameter or parameters. The vectors are generated by 
using the finite-element model of the initial discretization. Also, the performance 
of alternate sets of basis vectors is investigated. In the alternate sets, only a 
few path derivatives are generated, and they are augmented by a constant vector 
representing a uniform temperature rise (or drop) and by reciprocal vectors with non- 
zero components equal to the reciprocals of the nonzero components of the path deriv- 
atives. A problem-adaptive computational algorithm is presented for efficient evalua- 
tion of global approximation vectors and generation of the reduced system of equations 
and for monitoring the accuracy of the reduced system of equations. 

The potential of the proposed reduction methods for the solution of large-scale, 
nonlinear steady-state thermal problems is also discussed. The effectiveness of 
these methods is demonstrated by means of four numerical examples, including conduc- 
tion, convection, and radiation modes of heat transfer. 

This study shows that the use of the uniform-temperature mode and the path 
derivatives as global approximation vectors significantly increases the accuracy of 
the solutions obtained by reduction methods, thereby enhancing the effectiveness of 
these methods for the solution of large-scale, nonlinear thermal problems. 

INTRODUCTION 

Computational methods for nonlinear heat transfer have recently become the focus 
of intense research efforts because of the need for realistic modeling and accurate 
thermal analysis of large, complex hardware systems subject to harsh environments 
(e.g., reentry flight vehicle structures, large-area space structures, and nuclear 
reactor components). Considerable progress has been made in the development of 
numerical discretization techniques. (See, for example, refs. 1 to 3.) Also, a 
number of versatile and powerful finite-element and finite-difference (lumped- 
parameter) programs have evolved for nonlinear thermal analysis. A survey of some of 
these programs is given in reference 4. In spite of these advances, the nonlinear 
thermal analyses of most large and complex hardware systems require excessive amounts 
of computer time even on present-day large computers and thus are very expensive. 

The large numbers of degrees of freedom required in the nonlinear thermal analy- 
sis of complex systems are often dictated by the topology of the system rather than 



by t h e  expected complexity of the  behavior.  A s i m i l a r  s i t u a t i o n  has  been observed i n  
nonl inear  s t r u c t u r a l  a n a l y s i s  problems, and an effective reduct ion technique has been 
developed t o  s i g n i f i c a n t l y  reduce t h e  computational e f f o r t .  (See refs. 5 and 6 . )  
The a p p l i c a t i o n  of  t h e  reduct ion method o f  r e fe rence  6 t o  t r a n s i e n t  non l inea r  thermal 
problems is  descr ibed i n  reference 7. The a i m  of  t h e  p r e s e n t  s tudy i s  t o  develop a 
r educ t ion  method and a computational a lgori thm f o r  non l inea r  s t eady- s t a t e  thermal 
a n a l y s i s  of s t r u c t u r e s  and s o l i d s .  The proposed technique is  s i m i l a r  t o  t h a t  pre- 
sented i n  r e fe rences  5 and 6 f o r  t h e  nonl inear  s ta t ic  a n a l y s i s  of  s t r u c t u r e s  and is  a 
hybrid method which combines t h e  modeling v e r s a t i l i t y  of  contemporary f i n i t e  elements 
with t h e  reduct ion i n  t h e  t o t a l  number of degrees of freedom provided by t h e  classi- 
cal  Bubnov-Galerkin technique. 

Y 

To sharpen t h e  focus of t h e  s tudy,  d i scuss ion  is l i m i t e d  to  non l inea r  steady- 
s ta te  thermal problems with continuous temperature f i e l d s  i n  t h e  space domain. Con- 
vect ion,  nonl inear  conduction, and r a d i a t i o n  modes of  h e a t  t r a n s f e r  are considered. 

MATHEMATICAL FORMULATION 

Governing Finite-Element Equations 

The s o l i d  region i s  d i s c r e t i z e d  by using a s i n g l e - f i e l d  f ini te-element  model with 
t h e  fundamental unknowns c o n s i s t i n g  of t h e  temperatures a t  t h e  va r ious  nodes. The 
governing f ini te-element  thermal-equilibrium equat ions can be cast  i n  the  fol lowing 
form: 

where (TI  i s  the  vector of nodal temperatures,  {Q} is  the  normalized thermal- 
load vec to r ,  [ K ( T ) ]  is  t h e  n X n h e a t - t r a n s f e r  ma t r ix  (n i s  the  t o t a l  number of 
degrees of freedom), and q i s  a normalizing parameter f o r  t h e  thermal-load vec to r .  
( A  l i s t  of symbols used i n  t h i s  paper appears a f t e r  t h e  r e fe rences . )  The matr ix  
[ K ( T ) ]  and the  vec to r  {Q} can each be decomposed i n t o  t h r e e  components as follows: 

and 

where [ K ( k ) ] ,  and [ K ( h ) ]  a r e  t h e  conduction, r a d i a t i o n ,  and convection 

matr ices;  and ( Q ( O )  , {Q(') , and ( Q ( h )  } a r e  normalized appl ied hea t ing ,  radia-  
t i o n ,  and convection thermal-load vec to r s .  For convenience, t he  mater ia l  conductivi-  
t ies  i n  the p r e s e n t  study are assumed t o  vary q u a d r a t i c a l l y  with temperature,  as 
follows : 
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r 

where k:B is  t h e  thermal-conductivity c o e f f i c i e n t  a t  a p rese l ec t ed  reference 

temperature of T = 0 and y1 and y2 are conduct ivi ty  c o e f f i c i e n t s .  I n  t h e  
numerical s t u d i e s ,  only i s o t r o p i c  materials are considered, f o r  which 

k,, = k,, = k O ( l  + ylT + y2T2) 
assumed t o  be independent of  temperature and the r a d i a t i o n  matr ix  varies cub ica l ly  
with temperature. 

and k,, = 0. A l s o ,  t h e  convection matr ix  i s  

The matrices [ K ( k ' ]  and [E("] can be expressed i n  the  following forms: 

and 

where [K'")]  is  the l i n e a r  conduction matr ix  (independent of  T ) ;  [ K ( l ) ]  and 

[K(,)  ] 
q u a d r a t i c  i n  t h e  nodal temperatures {TI ;  [K( ' ) ]  i s  a normalized r a d i a t i o n  matr ix;  
and ql, q2,  and q3 are normalizing parameters. The expressions f o r  [K'" '] ,  

[ K ( l ) ] ,  [ K ( 2 ) ] ,  [K") ] ,  [ K ( h ) ] ,  {Q(O)), { Q ( r ) ) l  and { Q ( h ) )  f o r  t h e  ind iv idua l  
elements are  given i n  appendix A. 

are normalized nonl inear  conduction matrices whose t e r m s  are l i n e a r  and 

So lu t ion  of  t h e  Governing Equations 

The s o l u t i o n  of  equat ion (1) i s  obtained by using an inc remen ta l - i t e r a t ive  tech- 
nique (e.g. ,  a p red ic to r - co r rec to r  con t inua t ion  method). This i s  accomplished by 
embedding equat ion (1) i n  a s ing le -  o r  multiple-parameter family of equat ions of  t h e  
form { f ( T , q ) )  = 0 o r  { f ( T ,  91, q2 ,  q 3 ) }  = 0 .  Only t h e  single-parameter case i s  
discussed i n  t h i s  s e c t i o n .  The multiple-parameter case i s  examined i n  subsequent 
s e c t i o n s  ( i n  conjunction with reduct ion methods). The normalizing parameters q ,  
ql, q,, and q3 are a l s o  r e f e r r e d  t o  as c o n t r o l  o r  pa th  parameters. Henceforth, 
the t e r m s  normalizing parameter,  c o n t r o l  parameter,  and p a t h  parameter are used 
interchangeably.  

I n  the  single-parameter case, q1 = 9, = q3 = 1. For each value of q i n  some 
i n t e r v a l  (e.g. , 0 5 q 5 s) , a s o l u t i o n  { T ( q )  ) e x i s t s  which v a r i e s  continuously 
with q and s a t i s f i e s  t h e  condi t ions { T ( O ) )  = ( 0 )  and { T ( q ) )  = {T).  The solu- 
t i o n  {TI corresponding t o  a p a r t i c u l a r  value of t h e  parameter q i s  used t o  calcu- 
l a te  a s u i t a b l e  approximation ( p r e d i c t o r )  f o r  {TI a t  a d i f f e r e n t  value o f  q. This 
approximation i s  then chosen as an i n i t i a l  estimate f o r  {T} i n  a co r rec t ive -  
i t e r a t i v e  scheme such as t h e  Newton-Raphson technique. The i t e r a t i o n  process  is 
represented by t h e  following equat ions f o r  t h e  j t h  i t e r a t i o n  cycle:  

3 



where [J] i s  t h e  Jacobian matr ix  def ined as 

Note t h a t  t h e  Jacobian matr ix  [J] is ,  i n  gene ra l ,  nonsymmetric. I n  t h e  p r e s e n t  . 
study,  i n  o rde r  t o  avoid the  complications a s soc ia t ed  with so lv ing  nonsymmetric equa- 
t i o n s ,  a quasi-Newton method is  used. The method i s  based on using a symmetric 

approximation t o  t h e  Jacobian matr ix  c o n s i s t i n g  of  t h e  sum of  t h e  matr ix  and 

the con t r ibu t ion  of t h e  r a d i a t i o n  matr ix  t o  [$ T d  . The con t r ibu t ions  of t h e  

[K'"'] 

L J  J 

nonlinear  conduction matr ices  t o  [$ TJ form a nonsymmetric matr ix  and are 
L J  J neglected.  

BASIC I D E A  OF REDUCTION METHODS 

B a s i s  Reduction and t h e  Reduced System of  Equations 

The essence of reduct ion methods is  t o  reformulate  t h e  problem i n  terms of a 
few d i s c r e t e  variables 
(funct ions of  t he  variables { T I ) .  
t ransformation:  

($1, which r ep resen t  amplitudes of global-temperature modes 
This is  accomplished by using t h e  following 

where [r] is  an n X r t ransformation matr ix  i n  which t h e  columns r e p r e s e n t  g loba l  
approximation ( o r  b a s i s )  vec to r s .  Note t h a t  t h e  number of gene ra l i zed  d i s c r e t e  
v a r i a b l e s  r is  assumed t o  be much s m a l l e r  than the  number of degrees of freedom of  
t h e  i n i t i a l  d i s c r e t i z a t i o n  n. I 

A Bubnov-Galerkin technique i s  then used t o  approximate equation (1) wi th  a 
much smaller system of nonl inear  a l g e b r a i c  equat ions i n  the  new unknowns 
reduced equat ions have t h e  following form: 

{$I. The 

where 
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and 

The t i l d e  ( - )  r e f e r s  t o  t h e  reduced system, t h e  s u p e r s c r i p t  T denotes t ransposi-  
t i o n ,  and [ K ( $ ) ]  is  obtained from [ K ( T ) ]  by r ep lac ing  {T} by i t s  expression i n  
terms of ($1 from equat ion (10). 

The reduced-system h e a t - t r a n s f e r  matr ix  [g] and thermal-load vector  {e> can 
be sepa ra t ed  i n t o  components as follows (see eqs. ( 2 )  , (31, (5) , and ( 6 ) ) :  

and 

where [ z ( ” ) ]  i s  t h e  l i n e a r  conduction matr ix;  [“K”] and are t h e  

normalized nonl inear  conduction matrices; [2‘h’] and [E(‘) ] are the  convection 

and normalized r a d i a t i o n  matr ices;  { 6 ( O )  } 
and {G(r) } and (6 (h)  } are normalized r a d i a t i o n  and convection thermal-load 
vec to r s .  The e x p l i c i t  forms of t h e  reduced-system a r r a y s  are given i n  appendix B. 

is  t h e  normalized appl ied hea t ing  vec to r ;  

The s o l u t i o n  of  t h e  reduced-system nonl inear  equat ions (eq. (11)) is obtained 
by using an inc remen ta l - i t e r a t ive  technique s i m i l a r  t o  t he  one descr ibed i n  the pre- 
ceding s e c t i o n  f o r  t he  f u l l  system of equat ions.  However, s i n c e  the  number of equa- 
t i o n s  is  s m a l l  and t h e i r  s o l u t i o n  t i m e  is  a s m a l l  f r a c t i o n  of  the t o t a l  a n a l y s i s  
t i m e ,  no approximation needs t o  be made f o r  t h e  reduced-system Jacobian matr ix  [?I, 

.., 

and the  nonsymmetric con t r ibu t ions  of t h e  nonl inear  conduction matr ices  t o  [ -  $; 

are  included i n  [J]. - 

S e l e c t i o n  of B a s i s  Vectors 

The crux of r educ t ion  methods i s  the  proper  s e l e c t i o n  of  t h e  reduced b a s i s  
vec to r s  (columns of  t h e  matr ix  [r] i n  eq. ( 1 0 ) ) .  A n  ad hoc o r  i n t u i t i v e  choice 
may no t  l ead  t o  a s a t i s f a c t o r y  approximation. A l a r g e  number of numerical experi-  
ments with s t r u c t u r a l  and s o l i d  mechanics problems have demonstrated t h a t ,  i n  t h e  
case of a s i n g l e  pa th  parameter (such as q) , t he  var ious-order  d e r i v a t i v e s  of  {TI 
with r e s p e c t  t o  q (path d e r i v a t i v e s )  provide an e f f e c t i v e  s e t  of b a s i s  vec to r s .  
(See r e f s .  5 and 6 . )  I n  t h e  p r e s e n t  s tudy,  t h e  e f f e c t i v e n e s s  of using such b a s i s  
vec to r s  f o r  thermal problems i s  i n v e s t i g a t e d .  The p a t h  d e r i v a t i v e s  are evaluated a t  
q = 0 (ql = q2 = q3 = 1) and are given by 

5 



I n  the  case of  mul t ip l e  p a t h  parameters (such as ql, q2, and q3 ) ,  t h e  basis 

vec to r s  are chosen t o  be the  various-order d e r i v a t i v e s  with r e s p e c t  t o  t h e s e  p a t h  
parameters evaluated a t  q1 = q2 = q3 = 0 (q = l), t h a t  i s ,  

where {T)o i s  t h e  l i n e a r  s o l u t i o n  (zeroth-order d e r i v a t i v e ) .  The equat ions used i n  
eva lua t ing  t h e  basis vec to r s  (path d e r i v a t i v e s )  are ob ta ined  by successive d i f f e r e n -  
t i a t i o n s  of t h e  governing f ini te-element  equat ions o f  t h e  i n i t i a l  d i s c r e t i z a t i o n  i n  
equat ion (1). The e x p l i c i t  forms of these equat ions are given i n  appendix C f o r  both 
t h e  single-parameter and the  multiple-parameter cases. The advantage of computing 
the  pa th  d e r i v a t i v e s  a t  zero values  of t h e  pa th  parameters i s  t h a t  t h e  left-hand-side 
matr ix  used i n  eva lua t ing  t h e  p a t h  d e r i v a t i v e s  i s  independent of  temperature.  (See 
appendix C . )  

The chosen s e t  of b a s i s  vec to r s  i s  the  s a m e  as t h a t  commonly used i n  c lass ical  
p e r t u r b a t i o n  techniques.  The basis vec to r s  have t h e  fol lowing p r o p e r t i e s :  

1. They are l i n e a r l y  independent and span t h e  space of s o l u t i o n s  i n  t h e  neigh- 
borhood of  t he  p o i n t  of t h e i r  generat ion,  and t h e r e f o r e  they f u l l y  charac- 
t e r i z e  t h e  nonl inear  s o l u t i o n  i n  t h a t  neighborhood. 

2.  Their  generat ion,  using t h e  f ini te-element  model o f  t h e  i n i t i a l  d i s c r e t i z a -  
t i o n ,  r e q u i r e s  only one matr ix  f a c t o r i z a t i o n  of  t he  l i n e a r  matr ix  

[[K'O)] + 
inexpensive.  

(see appendix C ) ,  and t h e r e f o r e  it i s  computationally 

3. They provide a d i r e c t  measure of t h e  s e n s i t i v i t y  of t h e  thermal response t o  
changes i n  the  c o n t r o l  (pa th )  parameters.  

The f i r s t  property is  necessary f o r  t h e  convergence of t h e  Bubnov-Galerkin 
approximation. The second p rope r ty  s i g n i f i c a n t l y  enhances t h e  e f f i c i e n c y  of t h e  
reduct ion method and inc reases  i t s  e f f e c t i v e n e s s  i n  s o l v i n g  large-scale  nonl inear  
thermal problems. The impl i ca t ion  of t h e  t h i r d  property i s  t h a t  by appropr i a t e  
choice of  t he  c o n t r o l  parameters,  s e n s i t i v i t y  of  t h e  temperature d i s t r i b u t i o n  t o  
changes i n  t h e  thermal d a t a  of t h e  medium (e .g . ,  nonl inear  conduction and r a d i a t i o n  
c o e f f i c i e n t s )  can be obtained. Note t h a t  t h e  s e n s i t i v i t y  information is  obtained a t  
zero value (s)  of  t h e  c o n t r o l  parameter (s) . I f  t h e  s e n s i t i v i t y  i s  r equ i r ed  a t  o t h e r  
values  of t he  parameter (s) , approximate Taylor series expansion (s)  may be used. 

4 

I t  should be noted t h a t  t h e  use of pa th  d e r i v a t i v e s  as b a s i s  vec to r s  i n  non- 
l i n e a r  s t r u c t u r a l  and s o l i d  mechanics problems provided h igh ly  accu ra t e  s o l u t i o n s  
wi th in  a l a r g e  neighborhood of t he  p o i n t  of  eva lua t ion  o f  t hese  d e r i v a t i v e s  
( r e f s .  5 and 6 ) .  

Comparison With Taylor S e r i e s  Expansion 
i 

I f  t he  reduct ion method o u t l i n e d  i n  t h e  preceding s e c t i o n  i s  con t r a s t ed  wi th  
the Taylor s e r i e s  expansion used i n  classical  p e r t u r b a t i o n  techniques,  t he  following 

6 



can be noted. I n  both methods the  vec to r  of nodal temperatures {TI i s  approximated, 
over  a range of  va lues  of  t he  pa th  p a r a m e t e r ( s ) ,  by a l i n e a r  combination of t he  
var ious-order  d e r i v a t i v e s  of {TI  wi th  r e s p e c t  t o  the  pa th  pa rame te r ( s ) .  However, 
t h e  c o e f f i c i e n t s  of  t he  l i n e a r  combination i n  t h e  Taylor s e r i e s  expansion a r e  
f ixed  and are equal  t o  

{@I 

f o r  t h e  s ingle-parameter  case  and 

f o r  t he  three-parameter case. By c o n t r a s t ,  t h e  c o e f f i c i e n t s  ($1 i n  t h e  reduct ion  
technique are l e f t  as f r e e  parameters and a r e  determined by using t h e  Bubnov-Galerkin 
technique. Therefore ,  t h e  reduct ion  method can be thought of as e i t h e r  of t h e  
following: 

1. A 

2.  A 

Numerical 

genera l ized  Taylor s e r i e s  ( o r  pe r tu rba t ion )  approach wi th  f r e e  parameters 
o r  c o e f f i c i e n t s  {$.I 

genera l ized  Bubnov-Galerkin approach wi th  t h e  approximation ( o r  b a s i s )  
vec to r s  generated by using a p rese l ec t ed  f in i te -e lement  model r a t h e r  than 
chosen a p r i o r i  

experiments have shown t h a t  t h e  use of  t he  f r e e  parameters i n  t h e  general-  
i zed  Taylor s e r i e s  technique l eads  t o  accu ra t e  s o l u t i o n s  not  only wi th in  the  r ad ius  
of  convergence of  t h e  Taylor s e r i e s  b u t  a l s o  we l l  beyond it. (See r e f s .  5 and 6.)  

Comments on the  Se lec t ion  of B a s i s  V e c t o r s  

The computational e f f o r t  requi red  t o  genera te  t h e  b a s i s  vec to r s  can be reduced 
by genera t ing  only a few pa th  d e r i v a t i v e s  ( f o u r  o r  f i v e )  using equat ions ( C 1 )  o r  ( C 2 )  
and then  augmenting t h e s e  d e r i v a t i v e s  wi th  a cons t an t  vec to r  with equal  components 
r ep resen t ing  a uniform temperature mode, and/or r e c i p r o c a l  vec to r s  wi th  nonzero com- 
ponents equal  t o  t h e  r e c i p r o c a l s  of t h e  nonzero components of t h e  vec tors  i n  equa- 
t i o n s  (C1)  or ( C 2 ) .  The performance of t he  augmented s e t  of b a s i s  vec to r s  is  d i s -  
cussed i n  t h e  s e c t i o n  e n t i t l e d  “Numerical S tudies .  

COMPUTATIONAL ALGORITHM USED WITH REDUCTION METHODS 

To r e a l i z e  t h e  p o t e n t i a l  of reduct ion  methods i n  l a rge - sca l e ,  nonl inear  thermal 
a n a l y s i s ,  a problem-adaptive computational a lgori thm i s  needed which is both robus t  
and e f f i c i e n t .  The t w o  key elements of t he  algori thm f o r  nonl inear  s t eady- s t a t e  
problems a r e  t h e  following: 

1. E f f i c i e n t  eva lua t ion  of t h e  b a s i s  vec to r s  and genera t ion  of t h e  reduced sys- 
tem of equat ions 

2.  Sensing and c o n t r o l l i n g  t h e  e r r o r  i n  the  reduced system of equat ions 
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These elements have been d iscussed  i n  r e fe rences  5 and 6 i n  connection with s t ruc -  
t u r a l  and s o l i d  mechanics app l i ca t ions .  The key f e a t u r e s  o f  t h e  procedure are d i s -  
cussed h e r e i n a f t e r .  

Evaluat ion of t h e  Basis  Vectors and Generation 
of t h e  Reduced System of Equations 

The p a r t i c u l a r  choice of t h e  b a s i s  vec to r s  t o  be t h e  var ious-order  d e r i v a t i v e s  
of t h e  nodal-temperature vec tor  {TI with r e s p e c t  t o  t h e  pa th  parameter (s )  permits  
t he  genera t ion  of a l l  t h e  vec to r s  wi th  only one f a c t o r i z a t i o n  of  t h e  mat r ix  

[K‘O)]  + [K(h)]]. (See appendix C . )  Therefore ,  t h e  e f f o r t  t o  genera te  the  second 

of  equat ions ( C l )  or (C2)  f o r  t h e  single-parameter or t h e  multiple-parameter cases .  
The expressions of  t he  right-hand s i d e s  grow i n  complexity f o r  h igher  o rde r  der iva-  
t i v e s ,  and t h e i r  computation involves  con t r ac t ions  of multidimensional a r r ays  with 
the  b a s i s  vec tors .  (See appendix C . )  To improve t h e  computational e f f i c i e n c y ,  t he  
cont rac ted  a r r a y s  which a r e  common t o  more than one right-hand s i d e  are formed once 
and s to red  f o r  subsequent use. 

and succeeding b a s i s  vec to r s  reduces t o  t h a t  of eva lua t ing  t h e  right-hand s i d e s  R;”’ 

Note t h a t  because of t he  r ecu r s ive  na tu re  of t h e  formulas f o r  t he  pa th  der iva-  
t i v e s  i n  both t h e  single-parameter and the  multiple-parameter cases ,  a l l  t he  lower 
order  d e r i v a t i v e s  must  be eva lua ted  before  any subsequent d e r i v a t i v e s  can be com- 
puted. Once the  e n t i r e  s e t  of pa th  d e r i v a t i v e s  has been genera ted ,  it can be aug- 
mented with a cons tan t  vec to r ,  r e c i p r o c a l  vec to r s ,  o r  t h e  v e c t o r  { Z }  (eq.  ( D 2 )  i n  
appendix D )  f o r  t h e  case of p re sc r ibed  nonzero nodal temperatures  t o  form the  
mat r ix  [r]. 

The formation of t h e  reduced arrays involves  c o n t r a c t i o n  of t he  ful l -system 
a r r a y s  with t h e  b a s i s  vec tors  and appears t o  be t h e  most time-consuming par t  of t h e  
s o l u t i o n  process  based on the  reduct ion  technique. The independent elements of t h e  
reduced arrays a r e  generated once and s t o r e d  f o r  subsequent use,  when t h e  tempera- 
t u r e  d i s t r i b u t i o n  is requi red  f o r  d i f f e r e n t  v a l u e ( s )  of  t h e  pa th  pa rame te r ( s ) .  

Sensing and Cont ro l l ing  the  Error  i n  the  
Reduced System of Equations 

To check t h e  accuracy of t h e  s o l u t i o n  obtained with the  reduced system of equa- 
t i o n s  a t  any value of t he  pa th  parameter,  t he  approximate nodal temperatures  a r e  
generated by using equat ion (10) wi th  t h e  vec tor  {@I obta ined  by so lv ing  the  
reduced equat ions i n  equat ion (11). Then the  r e s i d u a l  vec tor  {R} of t he  o r i g i n a l  
f in i te -e lement  equat ions (eq. (1) ) i s  computed as fol lows : 

I n  t h e  p re sen t  s tudy,  a weighted Euclidean norm of  {R} i s  used as an e r r o r  
measure e ,  namely 
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Numerical experiments have demonstrated that the error norm e is useful in 
assessing the overall accuracy of different reduction methods (based on different 
sets of basis vectors). However, the magnitude of this error norm was found to be 
problem dependent, and therefore it is not possible to prescribe a value for the 
error tolerance which is suitable for different classes of nonlinear thermal problems. 
An alternate way of assessing the accuracy of the reduced solution is to use the 
vector of nodal temperatures 
the full system, obtain a corrected estimate of {T} by performing a single iteration 
of the Newton-Raphson technique, and compare the predicted and corrected values 
of {TI. 

{TI generated by the reduced system as a predictor in 

NUMERICAL STUDIES 

To test and evaluate the effectiveness of the proposed reduction techniques, 
several nonlinear thermal problems were solved. For each problem, solutions based 
on the full system of equations of the finite-element model were compared with other 
numerical approximations and exact solutions, whenever available; then the solutions 
obtained by the reduction method were compared with the full-system solutions and with 
other numerical approximations. The results of four typical problems are discussed 
herein. The four problems are the following: (a) two-dimensional steady-state con- 
duction in a square plate; (b) two-dimensional steady-state conduction in a cylinder 
with an eccentric hole; (c) steady-state analysis of a one-dimensional conducting- 
convecting-radiating fin; and (d) steady-state conduction and radiation in'a segment 
of the Space Shuttle orbiter wing. In all the problems considered, the thermal con- 
ductivity is assumed to be temperature dependent. In the first two problems only the 
single-parameter reduction method is used, and in the last two problems both the 
single-parameter and the multiple-parameter methods are applied. 

Two-Dimensional Steady-State Conduction in a Square Plate 

The first problem considered is that of steady-state thermal conduction in a 
thin square plate with prescribed boundary temperatures. (See fig. 1.) The thermal 
conductivities vary quadratically with temperature. The material and geometric char- 
acteristics of the plate are given in figure 1. The problem was solved with a number 
of techniques, including an exact analytic technique based on the Kirchhoff trans- 
formation, finite elements, single-parameter reduction methods, and a perturbation 
technique based on Taylor series expansion of the temperature. The details of the 
exact analytic solution are given in appendix E. 
conductivity coefficients with temperature, an exact analytic solution and a perturba- 
tion solution are presented in reference 8. 

For the case of linear variation of 

Because of symmetry, only one-half of the plate was considered and was modeled 
by a grid of 5 X 10 elements with biquadratic Lagrangian interpolation functions for 
the temperature (a total of 190 temperature degrees of freedom (D.O.F.)). The 
finite-element solution was found to be in close agreement with the exact analytic 
solution. In both the single-parameter reduction method and the Taylor series 
expansion, the control parameter q was taken to be the amplitude of the nonzero 
prescribed boundary temperatures. Contour plots for the temperatures at q = 300 K, 
600 K, and 2400 K are shown in figure 1. As can be seen from figure 1, at higher 
values of q a boundary layer (with steep temperature gradients) is formed near the 
edges where a temperature of 0 K is prescribed. The basis vectors were evaluated at 
q = 0 K, and they were obtained by solving a linear set of finite-element equations. 
(See appendix C. ) 
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Four s e t s  of b a s i s  vec to r s  a r e  considered i n  t h e  reduct ion  method. The f i r s t  
t w o  s e t s  o f  b a s i s  vec to r s  c o n s i s t  of t he  following: ( a )  t h e  f irst  e i g h t  d e r i v a t i v e s  
wi th  r e spec t  t o  t h e  c o n t r o l  parameter q;  and (b) t h e  f i r s t  fou r  d e r i v a t i v e s  wi th  
r e s p e c t  t o  q and four  r e c i p r o c a l  vec to r s  (with nonzero components equal t o  t h e  
r e c i p r o c a l s  of t h e  nonzero components of t h e  pa th  d e r i v a t i v e s ) .  The l a s t  t w o  s e t s  of 
b a s i s  vec to r s  are the  same as the  first two, except  f o r  t he  a d d i t i o n  of a cons t an t  
vec tor .  Normalized contour p l o t s  f o r  t h e  f i r s t  s i x  pa th  d e r i v a t i v e s  are shown i n  
f i g u r e  2. 

The accuracy of t h e  s o l u t i o n s  obtained by using t h e  Taylor series expansion and 
the  reduct ion  method i s  ind ica t ed  i n  f i g u r e s  3 and 4. A l s o ,  f i g u r e  5 shows t h e  va r i -  
a t i o n s  of  t he  e r r o r  norm e (eq. ( 1 9 ) )  and t h e  root-mean-square e r r o r  as t h e  number 
of  reduced-system b a s i s  vec to r s  i nc reases .  An examination of t h e  r e s u l t s  shown i n  
f i g u r e s  3 t o  5 r e v e a l s  t h e  following: 

1. The Taylor s e r i e s  s o l u t i o n  i s  considerably i n  e r r o r ,  even f o r  t h e  lowest  value 
of q (q = 300 K)  . (See f i g .  3.) The r ad ius  of convergence of t he  Taylor 
s e r i e s  w a s  found t o  be i n  t h e  neighborhood of  q = 240 K. By c o n t r a s t ,  t he  
s o l u t i o n s  obta ined  by using the  s ingle-parameter  reduct ion  method with e i g h t  
b a s i s  vec to r s  were gene ra l ly  accu ra t e ,  except  near  t h e  boundary zone. (See 
f i g .  4 . )  

2 .  The accuracy of  t he  s o l u t i o n s  obta ined  by us ing  fou r  d e r i v a t i v e s  and four  
r ec ip roca l  vec to r s  i s  comparable t o  t h a t  ob ta ined  by using t h e  e i g h t  der iva-  
t i v e s .  (See f i g .  4 . )  However, t h e  computational e f f o r t  involved i n  gen- 
e r a t i n g  the  e i g h t  d e r i v a t i v e s  i s  considerably more than t h a t  requi red  f o r  
genera t ing  the  fou r  d e r i v a t i v e s  and the  r e c i p r o c a l  vec to r s .  

3 .  The accuracy of t he  s o l u t i o n s  obtained by using the  reduct ion  method w a s  con- 
s ide rab ly  improved when the  e i g h t  b a s i s  vec to r s  were augmented by a cons t an t  
vec tor .  This i s  t r u e  f o r  both s e t s  of b a s i s  vec to r s .  (See f i g .  4 . )  

4.  The v a r i a t i o n  of t h e  e r r o r  norm e is s i m i l a r  t o  t h a t  of t h e  root-mean-square 
e r r o r  ( see  f i g .  5 ) ,  and the  s o l u t i o n s  obta ined  with the  reduct ion  method 
converge t o  t h e  ful l -system s o l u t i o n  as t h e  number of b a s i s  vec to r s  
i nc reases .  

Two-Dimensional Steady-State Conduction i n  a Cylinder 
With an Eccent r ic  Hole 

The second problem i s  s t eady- s t a t e  conduction i n  a cy l inde r  with an e c c e n t r i c  
ho le .  The temperatures of  t h e  inne r  and o u t e r  su r f aces  of  t he  cy l inde r  are p resc r ibed  
t o  be 1000 K and 0 K. The f in i te -e lement  model along wi th  t h e  ma te r i a l  and geometric 
c h a r a c t e r i s t i c s  of  t he  cy l inde r  i s  shown i n  f i g u r e  6. A previous f in i te -e lement  
s o l u t i o n  i s  presented i n  re ference  9 €or l i n e a r  v a r i a t i o n  of t h e  conduct iv i ty  coe f f i -  
c i e n t s  with temperature.  Because of symmetry, only one-half of t he  c r o s s  s e c t i o n  was 
modeled by a g r i d  of 48 i soparamet r ic ,  9-noded elements ( a  t o t a l  of 195 temperature 
degrees  of  freedom). Contour p l o t s  f o r  t h e  temperatures a r e  shown i n  f i g u r e  6 f o r  
t h e  two cases  of  y2 = 0.005, which correspond t o  l i n e a r  and quadra t i c  
v a r i a t i o n  of thermal conduct iv i ty  with temperature.  A boundary l a y e r  (with s t e e p  
temperature g rad ien t s )  e x i s t s  near t he  o u t e r  su r f ace  when y2 = 0.005, as shown i n  
f i g u r e  6. The c o n t r o l  parameter q w a s  taken t o  be t h e  amplitude of t he  prescr ibed  
boundary temperature.  The b a s i s  vec to r s  were generated a t  q = 0. 

y2  = 0 and 
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Four s e t s  of b a s i s  vec to r s  are again considered,  namely, e i g h t  d e r i v a t i v e s  with 
r e s p e c t  to  t h e  c o n t r o l  parameter q, e i g h t  d e r i v a t i v e s  and a cons t an t  vec to r ,  four  
d e r i v a t i v e s  wi th  r e s p e c t  to  q and t h e i r  r e c i p r o c a l  v e c t o r s ,  and four  d e r i v a t i v e s ,  
t h e i r  r e c i p r o c a l  vec to r s ,  and a cons t an t  vec to r .  The accuracy of  t he  s o l u t i o n s  
obta ined  by using each of t h e  s e t s  of  b a s i s  vec to r s  is  ind ica t ed  i n  f i g u r e  7 f o r  t h e  
two cases  of y2 = 0 and y2 = 0.005.  A s  i n  t he  previous problem, t h e  add i t ion  of 
t h e  cons t an t  vec to r  considerably improves the  accuracy of  t h e  s o l u t i o n s ,  p a r t i c u l a r l y  
near  t h e  o u t e r  su r f ace  f o r  t h e  case  of 
t i o n  obtained without  t he  use of t h e  cons t an t  vec to r  i s  represented  by t h e  d i s t ance  
between the  c r o s s  and c i r c l e  symbols i n  f i g .  7 . )  Also, t he  accuracy of t he  so lu t ions  
obta ined  by using fou r  d e r i v a t i v e s  and four  r e c i p r o c a l  vec to r s  i s  comparable t o  t h a t  
ob ta ined  by us ing  t h e  e i g h t  d e r i v a t i v e s .  

y2 = 0.005.  (Note t h a t  t he  e r r o r  i n  the  solu-  

c 

Steady-State  Analysis of a One-Dimensional 
Conducting-Convecting-Radiating F in  

The t h i r d  problem considered i s  s t eady- s t a t e  ana lys i s  of a one-dimensional 
conducting-convecting-radiating f i n .  (See f i g .  8 . )  The temperature a t  one end i s  
p resc r ibed  t o  be 1000 K. The f i n  w a s  modeled by using a v a r i a b l e  g r i d  of 15 one- 
dimensional f i n i t e  elements having 3 nodes and quadra t i c  Lagrangian i n t e r p o l a t i o n  
func t ions  f o r  t h e  temperature ( a  t o t a l  of 30 temperature degrees of freedom). The 
thermal conduct iv i ty  is  assumed t o  vary l i n e a r l y  with temperature ,  and the re fo re  the  
nonl inear  conduction mat r ix  [ K ( 2 )  ( T I ]  i s  zero.  

Solu t ions  were obtained by using both the  single-parameter and the  two-parameter 
reduct ion  methods. I n  t h e  s ingle-parameter  method, t h e  con t ro l  parameter q is the  
magnitude of both t h e  p re sc r ibed  temperature a t  and the  convection thermal- 
load vec tor .  The f i r s t  s i x  d e r i v a t i v e s  with r e s p e c t  t o  q were generated a t  q = 0. 
I n  t h e  two-parameter method, t h e  c o n t r o l  parameters are chosen t o  be q1 and q3. 
S i x  pa th  d e r i v a t i v e s  were generated a t  (These include the  l i n e a r  solu- 
t i o n  and a l l  t he  f i r s t  and second d e r i v a t i v e s  with r e s p e c t  t o  q1 and q3.)  The 
accuracy of t he  s o l u t i o n s  obta ined  by using the  reduct ion  methods i s  ind ica t ed  i n  
f i g u r e  9. The s o l u t i o n s  obta ined  by using both the  single-parameter and the  two- 
parameter reduct ion  methods a r e  i n  c lose  agreement with the  ful l -system s o l u t i o n  
except  near  t he  edge where 
x1 = 1.0  obtained with the  s ingle-parameter  and t h e  two-parameter reduct ion  methods 
a r e  6.9 and 5.8 percent .  I n  the  presence of convect ion,  it w a s  necessary t o  add the  
cons t an t  vec to r  t o  the  two s e t s  of b a s i s  vec to r s  t o  o b t a i n  accu ra t e  so lu t ions .  

x1 = 0 

q1 = q3 = 0 .  

x1 = 1.0. The maximum e r r o r s  i n  the  temperature a t  

Steady-State  Conduction and Radiat ion i n  a Segment 
of t he  Space S h u t t l e  O r b i t e r  Wing 

The f o u r t h  problem i s  s t eady- s t a t e  conduction and r a d i a t i o n  i n  a segment of t he  
Space S h u t t l e  o r b i t e r  wing ( f i g .  1 0 ) .  The problem w a s  s e l e c t e d  t o  a s s e s s  the  e f fec-  
t i veness  of reduct ion  methods f o r  complex aerospace app l i ca t ions .  

The model c o n s i s t s  of a two-dimensional c ros s  s e c t i o n  of a s i n g l e  bay of t h e  
S h u t t l e  o r b i t e r  wing inc lud ing  reusable  su r face  i n s u l a t i o n  (XI) and R S I  coa t ing ,  
room temperature-vulcanizing (RTV) rubber ,  a s t r a i n  i s o l a t i o n  pad (SIP), and p a r t  
of t he  aluminum wing box s t r u c t u r e .  This model i s  an adap ta t ion  of a f in i te -e lement  
model developed by the  au thors  of  r e fe rence  10. The app l i ed  hea t ing  on t h e  s t r u c t u r e  
c o n s i s t s  of  a d i s t r i b u t e d  h e a t  source on t h e  o u t e r  s u r f a c e  Q(xl) ,  which v a r i e s  

11 



quadratically with xl. The temperature of the aluminum inner surface is prescribed 
as 394.4 K and the outer surface is a radiating boundary. The material and geometric 
characteristics of the structure and the finite-element model used are shown in fig- 
ure 10. 
visual clarity. Rectangular nine-noded Lagrangian elements with biquadratic interpo- 
lation functions for the temperature are used in modeling the %I, RTV, and SIP. The 
aluminum structure, RSI coating, and radiating boundary are modeled by using one- 
dimensional three-noded elements with quadratic temperature interpolation functions. 
The finite-element model has a total of 64 nine-noded rectangular elements, 16 three- 
noded conduction elements, and 8 three-noded radiation elements (a total of 272 tem- 
perature degrees of freedom). 

Note that the scale of the model is magnified in the x2 direction for 

Solutions were obtained by using both the single-parameter and the three- 
parameter reduction methods. In the single-parameter method, the control parameter q 
was the magnitude of both the prescribed temperature and the applied heating. A total 
of eight path derivatives were generated at q = 0. In the three-parameter case, 
10 path derivatives were generated at - q1 = q2 - q3 = 0. 

The following two sets of basis vectors were used: the first eight derivatives 
with respect to the control parameter, and the linear solution and all the first- and 
second-order derivatives with respect to the control parameters ql, q2, and q3. A 
constant vector was added to each of the two sets. The accuracy of the solutions 
obtained by using each of the two sets of basis vectors is indicated in figure 11, in 
which plots of the temperature distribution along lines parallel to the XI and x2 
axes are shown. The variations of the erxor norm e and the root-mean-square error 
with the number of basis vectors are shown in figure 12. The addition of a constant 
vector to the path derivatives was necessary to obtain acceptable accuracy. (Results 
obtained without the use of the constant vector are not shown.) 

An examination of the results shown in figures 11 and 12 reveals the following: 

1. Both the single-parameter and the three-parameter reduction methods give 
accurate results for the high temperatures at the outer surface. However, the solu- 
tions obtained by using the single-parameter method are more accurate than those 
obtained by using the three-parameter method in the low-temperature region (near the 
aluminum structure). 

2. The variation of the error norm e is similar to that of the root-mean-square 
error, and the solutions obtained with both the single-parameter and the three- 
parameter reduction methods converge to the full-system solution as the number of 
basis vectors increases. 

COMMENTS ON REDUCTION METHODS FOR NONLINEAR THERMAL ANALYSIS 

The proposed reduction methods appear to have high potential for solution of 
large-scale, nonlinear thermal problems. The numerical studies conducted clearly 
demonstrate the accuracy and effectiveness of the techniques. In particular, the 
following two points are worth mentioning: 

t 

1. The small size of the reduced system of equations makes it feasible to con- 
duct parametric studies by repeatedly solving the equations for varying values of 
the control parameter (s) . 
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2. For t h e  problems considered,  t he  reduct ion  i n  the  a n a l y s i s  time achieved by 
using t h e  proposed technique i n  genera l  w a s  no t  p ropor t iona l  t o  t h e  reduct ion  i n  the  
number of degrees  of freedom of the  i n i t i a l  d i s c r e t i z a t i o n .  This  w a s  due t o  t h e  r e l a -  
t i v e l y  high c o s t  o f  eva lua t ing  t h e  b a s i s  vec to r s  and of genera t ing  the  reduced equa- 
t i o n s  . (as  compared with t h e  c o s t  of so lv ing  t h e  reduced nonl inear  a lgeb ra i c  equa- 
t i o n s ) .  For any given problem, t h e  saving i n  t h e  a n a l y s i s  time r e s u l t i n g  from the  
use of reduct ion  methods i s  a func t ion  of t he  hardware and of t he  system software a s  
wel l  as t h e  e f f i c i e n c y  of t he  program used i n  t h e  a n a l y s i s ,  and the re fo re  it i s  d i f f i -  
c u l t  t o  quant i fy .  I n  t h e  numerical examples considered,  o v e r a l l  reduct ions  i n  t h e  
CPU t imes a r e  es t imated t o  be f a c t o r s  of 2 to  3 .  However, it should be noted t h a t  t he  
program used f o r  t h e  computation w a s  no t  optimized, and a d d i t i o n a l  information i n  t h e  
form of s e n s i t i v i t y  of t h e  thermal response w a s  provided by t h e  b a s i s  vec tors  used i n  
the  proposed technique. More dramatic  savings i n  CPU t imes a r e  expected i n  la rge-  
s c a l e  problems with thousands of degrees  of freedom i f  an e f f i c i e n t  computer imple- 
mentation of t he  proposed technique i s  made. 

CONCLUDING REMARKS 

Reduction methods and a problem-adaptive computational a lgori thm were presented  
f o r  p r e d i c t i n g  nonl inear  s t eady- s t a t e  temperature d i s t r i b u t i o n s  i n  s t r u c t u r e s  and 
s o l i d s .  The computational a lgori thm can be convenient ly  divided i n t o  the  fol lowing 
two d i s t i n c t  s t ages :  d i s c r e t i z a t i o n  by using the  f in i te -e lement  method, and reduct ion  
i n  the  number of degrees of freedom of t h e  i n i t i a l  d i s c r e t i z a t i o n  by expressing the  
vec tor  of unknown nodal temperatures as  a l i n e a r  combination of global-temperature 
modes, o r  b a s i s  vec to r s .  A Bubnov-Galerkin technique i s  used t o  compute the  coe f f i -  
c i e n t s  of t he  l i n e a r  combination (amplitudes of t he  global-temperature modes). The 
b a s i s  vec to r s  a r e  chosen t o  be those commonly used i n  the  p e r t u r b a t i o n  technique,  
namely, t h e  d e r i v a t i v e s  of t he  nodal-temperature vec to r  with r e s p e c t  t o  p re se l ec t ed  
con t ro l  ( o r  pa th)  parameters.  The vec to r s  a r e  generated by using t h e  f in i te -e lement  
model of t he  i n i t i a l  d i s c r e t i z a t i o n .  

Four numerical examples demonstrate t he  e f f e c t i v e n e s s  of reduct ion  methods f o r  
t h e  s o l u t i o n  of nonl inear  s t eady- s t a t e  thermal problems. The four  problems a r e  two- 
dimensional s t eady- s t a t e  conduction i n  a square p l a t e ,  two-dimensional s t eady- s t a t e  
conduction i n  a cy l inde r  with an e c c e n t r i c  ho le ,  s t eady- s t a t e  a n a l y s i s  of a one- 
dimensional conducting-convecting-radiating f i n ,  and s t eady- s t a t e  conduction and 
r a d i a t i o n  i n  a segment of t he  Space S h u t t l e  o r b i t e r  wing. In  a l l  t he  problems con- 
s ide red ,  t h e  thermal conduct iv i ty  i s  assumed t o  be temperature dependent. 

The r e s u l t s  of t he  s tudy sugges t  s e v e r a l  conclusions r e l a t i v e  t o  the  s e l e c t i o n  
of b a s i s  vec to r s  and t o  t h e  e f f e c t i v e n e s s  of using reduct ion  methods i n  nonl inear  
s t eady- s t a t e  thermal problems. These conclusions a r e  as fol lows:  

1. The proposed reduct ion  methods a r e  hybrid techniques which combine the  major 
advantages of t h e  f in i te -e lement  numerical d i s c r e t i z a t i o n  technique,  t h e  c l a s s i c a l  
Bubnov-Galerkin technique,  and the  p e r t u r b a t i o n  method. These advantages are model- 
i n g  v e r s a t i l i t y ,  reduct ion  i n  t o t a l  number of degrees of freedom, and s i m p l i c i t y  of  
a s ses s ing  t h e  s e n s i t i v i t y  of t h e  thermal response t o  v a r i a t i o n s  i n  the  con t ro l  (or 
pa th )  parameters.  Moreover, t he  proposed methods g r e a t l y  a l l e v i a t e  t he  following 
major drawbacks of t he  aforementioned t h r e e  techniques:  

a. Excessive amounts of computer t i m e  requi red  f o r . t h e  nonl inear  f in i te -e lement  
ana lys i s  of l a r g e ,  complex systems 
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b. Difficulty of selecting global approximation functions for the classical 
Bubnov-Galerkin technique 

c. Small radius of convergence of the Taylor series expansions used in the 
classical perturbation techniques 

2. The use of path derivatives as basis vectors in nonlinear steady-state 
thermal problems leads to accurate solutions with a small number of basis vectors. 
Therefore, the time required to solve the reduced equations is relatively small, and 
the total analysis time to a first approximation equals the time required to evaluate 
the basis vectors and generate the reduced equations. 

3 .  The range of applicability of the reduction method can be greatly extended by 
augmenting the path derivatives of the nodal temperatures with a constant vector 
representing a uniform temperature rise or drop. In the problems considered, the 
addition of a constant vector was crucial for obtaining accurate solutions. 

4. The computational effort required €or generating the basis vectors can be 
reduced by generating only a few path derivatives (4 or 5) and then augmenting these 
vectors with "reciprocal vectors," in which nonzero elements are equal to the recip- 
rocals of the nonzero values of the path derivatives. The accuracy obtained by using 
this set of basis vectors is comparable to that obtained by using an equal number of 
path derivatives. 

5. The accuracy of the multiple-parameter reduction method is comparable to that 
of the single-parameter method. However, the former provides more information about 
the sensitivity of the thermal response to variations in the material properties of 
the structure. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
December 6, 1982 
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APPENDIX A 

The f i n  
lowing form: 

1 

FORMULAS FOR COEFFICIENTS I N  THE FINITE-ELEMENT 
EQUATIONS FOR I N D I V I D U A L  ELEMENTS 

te-element equat ions for ind iv idua l  e lements  can be w r i t t e n  i n  L e  f o l -  

( 2 )  
IJKL 

are full-system l i n e a r  and normalized nonl inear  con- 

(r) and Ki:’ are full-system r a d i a t i o n  and convection a r r a y s ;  

where KIJ (0) r 

duct ion a r r a y s ;  

KIJKr and K 

K~ JKLN 

Q i o l  

and Q, ( r )  

c i e n t s  f o r  t h e  f u l l  system. The range of  t h e  uppercase s u b s c r i p t s  (Lat in  index) i s  
1 t o  m,  where m i s  t h e  number of nodes i n  t h e  element, and a repeated uppercase 
subscript denotes summation over  t h e  f u l l  range. 

are normalized app l i ed  h e a t i n g  thermal-load c o e f f i c i e n t s  f o r  t h e  f u l l  system; 

and Q i h )  are normalized r a d i a t i o n  and convection thermal-load coef f i- 

The c o e f f i c i e n t s  i n  equat ion ( A l )  are def ined as fol lows:  

a N  a N  N N  ds2 
‘2‘:@ a I fi J K L 

= 
IJKL 

( r )  = J CIEN N N N N dc K~~~~ (e) I J K L N 
C r 
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APPENDIX A 

I n  the  above equat ions ,  MI a r e  shape ( i n t e r p o l a t i o n )  func t ions ,  a, f a/ax,, 

a p  a l a x p ,  Q'"' is  the  element domain, c 

where r a d i a n t  hea t ing  ( o r  cool ing)  is  p resc r ibed ,  

domain where convect ive hea t ing  (or cool ing)  i s  p resc r ibed ,  Q is  t h e  source h e a t  
r a t e ,  0 is  the  Stefan-Boltzmann cons t an t ,  E i s  t h e  emis s iv i ty ,  a is  t h e  absorp- 
t i v i t y ,  H is  t h e  i n c i d e n t  r a d i a n t  h e a t  f l u x ,  h i s  t h e  convection c o e f f i c i e n t ,  and 
Th is  t h e  known convective-exchange temperature.  The range of t h e  ind ices  a,(3 is 
1 , 2 ,  and a repeated index denotes summation over  t h e  f u l l  range. Note t h a t  t h e  K 

(h)  a r e  symmetric 
IJ 

(O)  and K 
IJ 

a r r a y s  possess  the  fol lowing i n d i c i a 1  symmetries: K 

with r e spec t  t o  interchange of I and J; 

(2)  i s  symmetric with r e s p e c t  t o  interchange of I and J 
IJKL change of I and J; K 

( r )  
I J K L N  

o r  K and L; and K 
any two ind ices .  

(e) 
r i s  the  p o r t i o n  of t h e  element domain 

ch (e)  i s  the  p o r t i o n  of t h e  element 

i s  symmetric wi th  r e s p e c t  t o  i n t e r -  
K~~~ 

i s  completely symmetric with r e s p e c t  t o  in te rchange  of 

Elements with i d e n t i c a l  geometry and i d e n t i c a l  thermal p r o p e r t i e s  have i d e n t i c a l  
K a r r ays .  Therefore ,  t h e  K a r r a y s  a r e  generated only f o r  d i f f e r e n t  elements 
( i . e . ,  f o r  elements with d i f f e r e n t  geometry and/or d i f f e r e n t  thermal p r o p e r t i e s ) .  
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APPENDIX B 

EXPLICIT FORMS O F  THE REDUCED SYSTEM O F  EQUATIONS 

The reduced system of equat ions (eq. (11)) can be w r i t t e n  i n  index no ta t ion  as 
follows : 

The s t r u c t u r e  of t h e s e  equat ions is  s i m i l a r  t o  t h a t  of  t h e  f ini te-element  equat ions 
f o r  i n d i v i d u a l  elements given i n  appendix A. The a r r a y s  i n  equation ( B l )  can be 
expressed i n  t e r m s  of  t h e  ful l -system a r r a y s  def ined i n  appendix A and t h e  matr ix  of 
b a s i s  vec to r s  rIi as follows: 

“KO) = 
KIJ (O)r Ii r J j  i j  

Elements 

( l ) r  . r  . r  - (1) 
Ki jk  = K I J K  11 JJ Kk 

Elements 

( 2 )  r . r  . r  r - ( 2 )  - - 
K I J K L  11 JJ Kk LR K 

i lk!? 
Elements 

( I )  r . r  . r  r r 
‘(r) ijkRn = KIJKLN 11 JJ Kk LR Nn 

Elements 

“ ( h )  - (h ) r  r - KIJ I i  J j  K 
i j  

E 1 e m e  n t s 

“(O) = Q;O)rIi 
E 1 emen t s 

Qi 

Elements 

Elements 
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where the range of uppercase subscripts (Latin index) is 1 to m (number of nodes in 
the element), the range of lowercase subscripts (Latin index) is 1 to r (number of 
reduced-system degrees of freedom), and a repeated index in the same term denotes 
summation over the full range. 

Note that the indicia1 symmetries exhibited by the full-system arrays are 

-(h) are symmetric arrays; retained in the reduced system as follows: Kij and Kij 

is symmetric with respect to interchange of i and j; K - ( 2 )  i jkk is symmetric 
Kijk 
with respect to interchange of i and j or k and k; and K -(r) is completely 

symmetric with respect to the interchange of any two indices. 

- ( 0 )  

i jkkn 
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APPENDIX C 

EVALUATION OF THE PATH DERIVATIVES 

The pa th  d e r i v a t i v e s  i n  equat ions (16) and (17)  are obta ined  by success ive  d i f -  
f e r e n t i a t i o n  of t h e  governing f in i te -e lement  equat ions (eq. (1)) with r e spec t  t o  the  
pa th  parameter q i n  t h e  s ingle-parameter  reduct ion  method and wi th  r e s p e c t  t o  the  
parameters ql, q2, and q3 i n  t he  three-parameter reduct ion  method. The e x p l i c i t  
forms of t h e  r ecu r s ion  r e l a t i o n s  €or  ind iv idua l  elements a r e  given i n  t h i s  appendix. 

c Single-Parameter Reduction Method 

The r ecu r s ion  r e l a t i o n s  f o r  t h e  pa th  d e r i v a t i v e s  can be w r i t t e n  i n  the  fol lowing 
compact form: 

where I and J range from 1 t o  m (number of nodes i n  the  e lement ) ,  a ranges 
from 1 t o  r (number of reduced-system degrees of freedom), and t h e  e x p l i c i t  forms 

of t h e  components of t he  right-hand s i d e  are given i n  t a b l e  C1.  
I 

TABLE C1.- EXPLICIT FORMS OF COMPONENTS O F  FOR SINGLE-PARAMETER METHOD 
I 

E x p l i c i t  form of R;"' 

.. -_ . . ~ . -~ . . . .... 

aTJ aTK a2TL a2TJ aTK aT, 
-K + 12 --- 

aq2 as as 
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TABLE C1.- Continued 

a 

5 

- 

6 

- 

7 

.. 

(a) Explicit form of RI 

a3TJ a2TK a2TJ a3TK aTJ a 4 T~ 

a 2 T~ aTK a 2 T~ aTK a 3 T~ + 60--- + %(40 __ - + 30 331 
+ lo-- + l o - -  +5--) 

as3 as2 as2 aq3 aq as4 

aq2 as aq2 aq aq aq3 as2 aq2 

a5TJ aTK a4TJ a2TK a3TJ a3TK a 2 T~ a 4 T~ aTJ a 5 T~ 
+ 15-- + 20 -- + 15 + 6--) 

(6 __ 

- - 
K~ JK as5 as4 as2 as3 as3 as2 as4 aq as5 

a4TJ aTK aTL a3TJ aTK a2TL a2TJ aTK a3TL 

IJKL as4 aq aq as3 aq as2 aq2 aq as3 -K + 120 - - - + -(120 - - 

a 5 T~ a 2 T~ a 4 T~ a 3 T~ 
- + 21-- + 35-- 

aq5 as2 as4 as3 
a3TJ a4TK a2TJ a5TK aTJ a6TK 

as3 as4 as2 as5 aq as6 
a5TJ aTK aT, a 4 ~ J  aTK a2TL a3TJ aTK a3TL 

+ 35-- + 21-- + 7- - )  

-K + 210 - - - + -(280 - - 
aq4 aq as2 as3 aq as3 

aTK a4TL 

as4 -- 

aTK a5TL a2TK a4TL a3TK a3TL 
+ %(84 - ~ + 210 - - + 140 --)I 
aq as aq5 as2 as4 as3 as3 
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TABLE C1.-  Concluded 

E x p l i c i t  form of  R i a '  

7 a 6 Tj a 2 T~ a5TJ a3TK a4TJ a4T, a3TJ a5T, a TJ aTK - (l) (8 __ - + 28-- + 56-- + 70-- + 56-- 
K~~~ aq7 as as6 as2 as5 as3 as4 as4 as3 as5 

a6TJ aT, aTL a5TJ aT, a2TL a4TJ aT, a3TL 

__ aT, __ a4TL 

- ( 2 )  __ __ - + 336 - __ - + -(560 - - 
,IJKL aq6 as aq as5 as as2 aq4 

a2TK "".) + i('60 a3TJ + 420 - - as2 as2 as aq as4 
a2T J aT, a5TL a2TK a4TL a3TK a3TL 

+ -(336 - - + 840 __ - + 560 - - 
as2 aq as5 as2 aq4 as3 aq3 

2 5 a 3 T~ a 4 TL 

as as as6 as2 as5 as as4 
aTJ aT, a 2 T~ a 4 T~ 

aTJ aTK a 3 T~ a 3 ~ ~  

aTK a 6 TL a T~ a T~ 
+ y 1 2  - - + 336 - - + 560 3 -j 

- ( r )  (1344 __ __ - - + 10 080 - - - - 
5 aTJ aT, aTL a TN 

K~~~~ as aq as as5 aq aq aq2 aq4 

aTJ a 2 T~ a 2 T~ a 3 T~ 
+ 20 160 - - - - + 6720 - - - - as2 as2 as3 as aq as3 aq3 

Three-Parameter Reduction Method 

(a) = RI 

where I and J range from 1 to  m. The t o t a l  number of p+s+t combinations 
i s  r, and t h e  e x p l i c i t  forms of t h e  components of  t h e  right-hand s i d e  R i a )  

g iven i n  table C2.  

are 
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TABLE C2.- EXPLICIT FORMS OF COMPONENTS OF RI (a) FOR THREE-PARAMETER METHOD 

O r d e r  
Of 

equation 

Z e r o t h  

F i r s t  

Second 

P 

0 

2 

0 

0 

0 

1 

~ 

0 

t E x p l i c i t  form of R i a )  

- ( l ) T  T 
K~~~ J K 

- ( 2 )  T T T 
KIJKL J K L 

- K ( r )  T T T T 
I J K L N  J K L N 

- ( 2 )  (2T T - aTL + T T  ”) 
K L a q 3  K~~~ J K aq3 
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TABLE C2.- Continued 

Order 
of 

equation 

Second 

Third 

P 

- 

S 

~ 

1 

0 

3 

0 

2 

1 

0 

- 

t 

~ 

0 

0 

0 

3 

1 

2 

1 

~ 

Explicit form of RI (a) 

.aTL 
K~~~ J K as, K L as, - (2) (2. T - + T T  %) 

aTJ aTK 

aql aq, 
- + 6-- 

aTK aTL aT, aTL 

K aq2 aq2 
-K + 6 T  -- + 12T -- + 3TKTL - 

J as2 aq2 

aT, aT, 

J K aq3 aq3 
- + 36T T - -) 

aTK aTL aTJ aTL a2TL 
+ 4 T  -- + 4T T - K:ih(.TJ K aq2 aq3 J K aq2 aq3 

aTJ aTL 

K aq3 aq2 
+ 4 T  -- 

2 aTL aT, 

J K aq2 aq2 
- a TN + 12T T - -) 

a2TL aTK aTL aTJ aTL 

a93 

- (2)  (.. T - + 2 T  -- + 4 T  -- 
KIJKL J K 2 J aq3 aq3 K aq3 aq3 

- 

2 
aTJ aTK 

J aql aq3 aq3 aql 
+ 2 - -  + 2T a TK + 2T 

- 
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TABLE C2.- C o n c l u d e d  

Order 
of 

equation 

T h i r d  

S 

_.  

0 

1 

2 

1 

- 

t 

- .-. 

2 

0 

0 

1 

- 

. ~ ~- .. - -  - 

aT, aTN 

J K aql aq3 
+ 24T T - -) - 

aTJ aTK 

J aql aq2 a q 2  aql 
+ 2T + 2 - -  + 2T 

aTK aTL aTJ aTL 
+ 4 T  -- + 2T -__ 

J aql aql K aql aql 
- 

aTJ aTK 

aq2  a q 2  TK 
+ 2-- - 

aTJ aT, a2TL 
+ 4 T  -- + 4T T 

K aql aq2  J K aq, aq2  
- 

a2TK aTJ aTK 

J aq2 aq3  aq3 392 
+ - -  + T  - 

aT aTL aTJ aTL 
+ 2 T  -- + 2T T K 

-K ::kbTJ 5 K aql  aq3 J K aql 89, 

- 

f 

t 
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I n  t a b l e s  C 1  and C 2  a repeated uppercase La t in  index denotes  summation over  t h e  
range 1 t o  m. The eva lua t ion  of t h e  right-hand-side vec to r s  l i s t e d  i n  t a b l e s  C 1  
and C2 involves  con t r ac t ion  of K a r r a y s  with b a s i s  vec to r s .  Many of t h e  cont rac ted  
arrays reappear i n  subsequent right-hand s i d e s .  For computational e f f i c i e n c y ,  t h e  
cont rac ted  a r r a y s  which a r e  common to  more than one right-hand s i d e  are generated 
once and s to red  f o r  subsequent use. Note t h a t  t he  c o e f f i c i e n t  mat r ix  on the  l e f t -  
hand s i d e s  of equat ions (Cl) and ( C 2 ) ,  which m u s t  be f ac to red ,  i s  t h e  s a m e  f o r  each 
of t h e  pa th  d e r i v a t i v e s .  Hence, a f t e r  assembly, t h e  g loba l  mat r ix  i s  f ac to red  only  
once r ega rd le s s  of t he  number of pa th  d e r i v a t i v e s  generated.  
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TREATMENT OF PRESCRIBED BOUNDARY TEMPERATURES 

In the case of prescribed nonzero values for the boundary temperatures, it is 
convenient to partition the vector of nodal temperatures {T} as follows: 

where {Tf} and (Tp} are the vectors of free and prescribed nonzero nodal tempera- 
tures. The prescribed zero nodal temperatures and their associated equations are 
eliminated from equation (1). The prescribed nonzero nodal temperatures are assumed 
to be proportional to the parameter q, that is, 

Governing Finite-Element Equations 

Equation (1) can be conveniently partitioned into two sets of matrix equations 
as follows: 

In the absence of heat sources and radiation and convection thermal loads, 
{ef} = 0 and {Qp} equals the equivalent thermal loads associated with the pre- 
scribed temperatures {Tp}. 
determine (Tf} and the second set can then be used to evaluate the vector {Q,}. 

The first set of equations in equation (D3) is used to 

Basis Vectors and the Reduced System of Equations 

The matrix [r] in equation (10) can be conveniently partitioned as follows: 

26 
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where 

f o r  t he  single-parameter case, and 

f o r  t h e  three-parameter case. 

The corresponding reduced-system equat ions a r e  given by equation (11) with {;> 
given by 

- w 

Note t h a t  when {Qf} = 0 ,  {Q} has only one nonzero component, namely Ql. Equa- 
t i o n  (11) is solved f o r  t he  reduced unknowns {I)} subject t o  t h e  condi t ion = q. 

Whenever d e s i r e d ,  t h e  basis vec to r s  i n  equat ions (DS) and ( D 6 )  are augmented by 
t h e  cons t an t  and r e c i p r o c a l  vec to r s  def ined i n  t h e  paper.  

i 
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EXACT SOLUTION FOR TWO-DIMENSIONAL STEADY-STATE CONDUCTION I N  A 
SQUARE PLATE WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITIES 

The exac t  s o l u t i o n  f o r  t h e  two-dimensional s t eady- s t a t e  conduction i n  a square 
i s o t r o p i c  plate  with temperature-dependent thermal c o n d u c t i v i t i e s  can be obtained by 
using t h e  Kirchhoff t ransformation (see page 11 of ref .  ll), which involves  t h e  fo l -  
lowing subs ti t u t i o n  : 

U ( T )  = - J T  k ( T )  dT 
h0 0 

For quadra t i c  v a r i a t i o n  of  conduct ivi ty  with temperature of t h e  form 

h ( T )  = ko( l  + ylT + y2T , equation ( E l )  becomes 

The governing d i f f e r e n t i a l  equation f o r  h e a t  conduction i n  t h e  p l a t e  i s  l i n e a r  
i n  t h e  transformed v a r i a b l e  U ( T ) .  The expression of  U ( T )  which s a t i s f i e s  t h e  
boundary condi t ions shown i n  f i g u r e  1 can be w r i t t e n  i n  t h e  following form: 

mTxl mTx2 
s i n h  - Am s i n  - 

L L 
m=1,3,5, ... 

where L i s  t h e  s ide  l eng th  of  t h e  p l a t e  and 

dxl + - y  q s i n -  3 2  

Once the  c o e f f i c i e n t s  Am have been evaluated and U i s  determined from equa- 
t i o n  (E3) ,  t h e  value of t h e  temperature T a t  each p o i n t  can be obtained by s o l v i n g  
t h e  cubic equation (eq. (E2) ) . 

I n  the  p r e s e n t  s tudy,  10 terms w e r e  included i n  t h e  series expansion of U 
(eq. ( E 3 ) ) ,  with an est imated maximum t runca t ion  e r r o r  of  1 X f o r  t h e  tempera- 
t u r e  T. The computerized symbolic and a l g e b r a i c  manipulation system MACSYMA 
( r e f .  1 2 )  w a s  used i n  t h e  computation. 
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SYMBOLS 

A cross-sectional area of fin 

a absorptivity 

C circumference of fin 

'r ''h portions of the element domain where radiant and convective heating (e) (e) 

(or cooling) are prescribed (see appendix A) 

e error norm defined in equation (19) 

{f (T) 1 ,  (I)) } vectors defined in equations (1) and (11) 

H incident radiant heat flux 

h convection coefficient 

CJ1 Jacobian matrix defined in equation (9) 

Jacobian matrix of the reduced equations 

heat-transfer matrices of the full and reduced systems (see 
eqs. (1) and (12)) 

conduction, radiation, normalized radiation, and convection matrices 
of the full system (see eqs. (2) and (6)) 

linear conduction matrices (independent of T) of the full and 
reduced systems (see eqs. (5) and (14)) 

normalized nonlinear conduction matrices of the full and reduced 
systems (see eqs. (5) and (14)) 

normalized radiation and convection matrices of the reduced system 
(see eq. (14)) 

full-system linear and normalized nonlinear conduction arrays 
defined in appendix A 

full-system radiation and convection arrays defined in appendix A 

reduced-system linear and normalized nonlinear conduction arrays 
defined in appendix B 

reduced-system radiation and convection arrays 

thermal-conductivity coefficient of an isotropic material 

thermal-conductivity coefficients in equation (4) 
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m number of nodes in an element 

n total number of temperature degrees of freedom in the analysis model 

shape (interpolation) function 

normalized thermal-load vectors for the full and reduced systems 

NI 

{Q} , {;I 

{Qf},{Qp} 

{Q(O) }, {Q(r) }, {Q(h) } 

thermal-load vectors associated with free and prescribed temperatures 
(see eq. (D3)) 

normalized applied heating, radiation, and convection thermal- 
load vectors for the full system (see eq. (3)) 

{e(o) }, {G(r) } , {G(h) } normalized applied heating, radiation, and convection thermal- 
load vectors for the reduced system (see eq. (15)) 

normalized applied heating, radiation, and convection thermal- (0) (r) (h) Q, rQ, rQ, 
load coefficients for the full system (defined in 
appendix A) 

normalized applied heating, radiation, and convection thermal- 
load coefficients for the reduced system (defined in 
appendix B) 

qrq1rq2rq3 normalizing (or control) garameters 

{ R} residual vector defined in equation (18) 

r number of basis vectors (reduced-system degre-es of freedom) 

T temperature 

vectors of free and prescribed nodal temperatures (see 
(eq. (D1)) 

Th convective-exchange temperature 

component of nodal-temperature vector TI 

Cartesian coordinates x1’x2 

{ Z }  vector of normalized prescribed nonzero nodal temperatures (see eq. (D2)) 

conductivity coefficients (see eq. (4)) Y1rY2 

Crl I Cr, 1 I Crpl 
& emissivity 

matrices of basis vectors defined in equations (10) and (D4) 

{4J 1 vector of undetermined coefficients of the reduced system 

4Ji undetermined coefficients of the reduced system (amplitudes of global- 
temperature modes) 
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0 Stefan-Boltzmann constant 

S2(e) domain (area or length) of a conduction element (see appendix A) 

= alax,, cx = 1, 2 

= a/axB, B = 1, 2 aB 
Range of indices: 

I , J , K , L , N  1 to m (the number of nodes in the element) 

i,j,k,R,n 1 to r (the number of reduced-system degrees of freedom) 

7 , 3 , L  1 to n (the total number of temperature degrees of freedom) 

a ,  B 1 to 2 

Superscripts: 

e element domain 

h convection 

k conduction 

0 linear conduction 

r radiation 

1,2 normalized nonline& conduction 
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T X l  ,-T = q sin 

k = k" (1 + YlT+ Y2T2) 

k" = 1.0 W/m-K 

71 = 8.333 X 10-3 

72 1.3889 X iom4 
L = 1.0 m 

Figure 1.- Finite-element model and 

A 
q = 300 K 

normalized contour plots 

B 

A 
q = 600 K 

A 
q = 2400 K 

for temperatures at q = 300 K, 600 K, and 2400 K 
in a square plate with temperature-dependent thermal conductivities. 
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- x 1  

WL---d 

B 
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0.1 4 
B 

L O -  

B 

Figure 2.- Normalized contour plots for the first six path derivatives for square plate with 
temperature-dependent thermal conductivities. 
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Figure 3.- Accuracy of solutions obtained by using Taylor series expansion for square plate with 
temperature-dependent thermal conductivities. q = 300 K. 
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Figure 4.- Accuracy of s o l u t i o n s  obta ined  by us ing  d i f f e r e n t  sets of  
b a s i s  v e c t o r s  f o r  square  plate  wi th  temperature-dependent thermal  
c o n d u c t i v i t i e s .  
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Figure 5.- Accuracy and convergence of solutions obtained with different sets of basis vectors 

(including the constant vector) for square plate with temperature-dependent thermal 
conductivities. 
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Figure 6.- Finite-element model and normalized contour plots for temperatures corresponding to 
y2 = 0 and 0.005 
conductivities. 

in a cylinder with an eccentric hole and temperature-dependent thermal 
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Figure 7.- Accuracy of so lu t ions  obtained by using d i f f e r e n t  sets of bas i s  vectors  f o r  cyl inder  having 
an eccent r ic  hole and temperature-dependent thermal conduct iv i t ies .  
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Figure 8.- Conducting-convecting-raaiating €in used in t h e  present s tudy .  
T = 1000 K at x1 = 0 .  
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Figure 9.- Accuracy of solutions obtained by using single-parameter and two-parameter reduction 
methods for conducting-convecting-radiating fin. 
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Figure  10.-  Segment of t h e  S h u t t l e  wing bay 
used i n  t h e  p r e s e n t  s tudy .  
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Figure 11.- Accuracy of so lu t ions  obtained by using single-parameter and three-parameter 
reduct ion methods for  segment of the  Shu t t l e  wing bay. 
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